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1. Introduction 
Multi-level phase-shift-keying (PSK) offers high spectral efficiency transmission in coherent optical communication 
systems. Quaternary PSK (QPSK) format, in particular, has received much attention recently [1]. An optical QPSK 
signal can be generated, e.g., by an integrated LiNbO3 quadrature modulator (QM) with two parallel Mach-Zehnder 
modulators (MZMs) nested in a MZ interferometer. Each MZM is driven to produce a binary PSK (BPSK) signal. 
An optical QPSK signal is produced when the two MZMs are biased at their null transmission points and the MZ 
interferometer is biased at the quadrature phase (π/2). An automatic feedback control loop that searches for these 
biases and phase operating points of the QM at initial startup and maintaining them during operation is essential. We 
report here a technique for such a closed-loop bias control for the QM using commercial off-the-shelf (COTS) 
components. Simulations and experimental results of the QM control loop for generation of 12.5 GSym/s QPSK 
signals are described. 
 
2. QM control loop analysis and simulation 
Fig. 1 shows a schematic of a QM with two push-pull type MZMs with RF and DC bias electrodes nested in a MZ 
interferometer with a phase electrode for quadrature bias. Consider a single MZM, the directly detected optical 
output power is: ( ) ( ) ( )( ){ }2 1 coso i s BP t kP V t V Vππ= + +   , where Vs(t) is the NRZ drive signal with a peak-to-peak 

voltage swing Vpp, VB is the bias voltage, Vπ  is the half-wave voltage, Pi is the input optical power, and k accounts 
for the insertion loss of the MZM. To generate optical BPSK signal, the MZM bias is set to the null transmission 
with VB = ±Vπ , ±3Vπ ,…, and Vs varies between ±Vπ. The output average power over a period of time T is 
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Taking the derivative of the above with respect to VB and equating to zero gives 
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The above is satisfied if Vs = mVπ  and VB = nVπ ( , 0, 1, 2,...m n = ± ± ). Taking the second derivative of ( )oP t  with 
respect to VB gives 
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Therefore, the conditions for extrema of the average optical power are 
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For null transmission of the MZM, VB = ±Vπ , ±3Vπ ,…, so that the above can be written as follows 
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Therefore, in order to maintain null transmission of the MZM for BPSK operation the average power of the MZM 
output should be maximized for 2ppV V Vπ π< ≤  or minimized for 0 ppV Vπ< < . 

 
Fig.  1. Schematic of a quadrature modulator with two parallel MZMs nested in a MZ interferometer with a phase bias. 

 
Fig. 2a shows a simulated output optical average power of the QM versus VB for Vpp of 0.75 and 1.2Vπ. The 
simulation uses 12.5 Gb/s NRZ pseudo-random binary sequence (PRBS) signals with a word length of 211-1 with 
realistic waveforms (finite rise and fall times and ringings) to drive the two MZMs of the QM biased to quadrature 
phase. The two NRZ signals are complementary with a 2-symbol relative time delay. Gaussian noise was added to 
the drive signal and to the input optical field to check the robustness of the response. As can be seen, the simulation 
result is consistent with the dependence of the average power on the MZM bias analyzed above. 

                     
Fig.  2. Simulation results for (a) average power versus bias voltage of MZM and (b) integrated RF spectral power versus 
∆φIQ for NRZ drive signal swing of 0.75 and 1.2Vπ. 

 
Consider now the phase bias of the MZ interferometer of the QM where the phase shift between the two BPSK 

signals (I and Q) is ∆φIQ. It can be shown that the directly detected output power of the QM is given by 

( ) ( ) ( ) ( ) ( ) ( ){ }4 1 cos 2 cos 2 2sin 2 sin 2 cosQM i I Q I Q IQP kP V V V V V V V Vπ π π ππ π π π φ  = − − + ∆    , 

where VI and VQ are the NRZ binary data signals applied to the two MZMs biased at their null transmission points 
(VB = Vπ).  Assuming VI and VQ varies between ±Vπ, the detected output can thus be simplified as follows 
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It is clear that data-like binary pattern will appear at the output of the QM if the MZ interferometer is not in 
quadrature (∆φIQ ≠ π/2). The RF spectrum of PQM contains low-frequency components due to this data pattern. 
Therefore, a minimum integrated RF spectral power of PQM should be an indication that ∆φIQ is close to π/2. Fig. 2b 
shows the simulated integrated RF spectral power of PQM (VRF) for Vpp of 0.75 and 1.2Vπ versus ∆φIQ using similar 
NRZ drive signals with Gaussian noise as in Fig. 2a.  The results are in agreement with the analysis.  Note that the 
dependence of VRF on ∆φIQ is not affected by Vpp. Based on the analysis and results shown in Fig. 2, a QM control 
loop algorithm and model was developed. The control loop uses a steepest decent algorithm to search for optimal 
operating points of the QM via dithering of its biases and phase. Fig. 3 shows typical simulation results of the 
control loop with Gaussian noise added to the drive signals and to the input optical field as before. One can see that 
the control loop is quite robust even in the presence of significant amount of amplitude and phase noise. 
Convergence to optimal operating points was observed for many random initial biases and phases of the QM tested. 
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Fig.  3. Constellation plots of the QM optical output at startup (a) and after 50 iterations of the control loop (b). Plot of 
deviations of the two biases and phase from their optimal points (π and π/2) versus iteration number are shown in (c). 

 
3. QM control loop experiment 
An experiment on closed-loop control of the QM was conducted to investigate its performance for generation of a 
12.5-GSym/s optical QPSK signal. A packaged LiNbO3 QM was driven by two 12.5 Gb/s NRZ PRBS (215-1) 
signals. Details of the LiNbO3 QM will be presented. The two NRZ signals are complementary with a 2-symbol 
relative time delay. The NRZ drive voltage swing applied to the QM was Vpp ~ 1.2Vπ. The output of the QM was 
tapped off and directed to a 750-MHz photodetector where its output was divided into two with one path connected 
to a Schottky diode to extract the low-frequency RF spectral power (VRF). The signal was amplified and directed to a 
COTS analog-to-digital converter (ADC) connected to a desktop computer (PC) running a code based on the control 
loop algorithm described earlier. The second path was amplified and directly connected to the ADC that provides 
monitoring of the optical average power by numerical averaging of the digitized signal. Outputs of a COTS digital-
to-analog converter connected to the PC are directed to the two MZM bias ports and the phase port of the QM. This 
completes the QM feedback control loop. 

The 12.5 GSym/s optical QPSK signal was directed to a receiver with an optical pre-amp and a band-pass filter. 
Differential detection of the 12.5 GSym/s QPSK signal was employed using a fiber-based asymmetric Mach-
Zehnder (AMZ) interferometer [1] with a one-symbol differential delay (80 ps). The two outputs of the AMZ 
demodulator were directed to a 15-GHz balanced photoreceiver. Fig. 4 shows BER measurements of the 
differentially detected QPSK signal using the automatic control loop. Measurements using manual adjustment of the 
DC biases and phase of the QM by minimizing the BER are also shown. A power penalty of about 1 dB at 10-9 BER 
was observed for the control loop. This is attributed to the dithering and the relatively flat responses of VRF and the 
average power near their optimal points as can be seen in Fig. 2. Nevertheless, the control loop concept was 
demonstrated and validated using COTS components. The QM control loop was operated continuously for about 20 
hours with no degradation in performance. The control loop is expected to work for higher symbol rates since no 
high-speed components are required in the loop. The control loop also works for RZ format of the QPSK signal. 
Test results for generation and detection of 12.5 GSym/s RZ-DQPSK using the QM control loop will be discussed. 
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Fig.  4. BER versus received optical power of the differentially detected QPSK signal with automatic control loop or with 
manual adjustment of the QM. Insets show eye diagrams of the differentially detected 12.5 GSym/s QPSK signal (top) and 
waveforms of the directly detected output from the QM (bottom) for auto and manual control. Horizontal scale: 20 ps/div. 

 
In summary, a closed-loop control for the QM using COTS components is reported. Simulations and 

experimental results on the control loop for generation of 12.5 GSym/s QPSK signals were described. The control 
loop shows a 1-dB sensitivity penalty compared with manual adjustment of the QM by minimizing the BER. 
Nevertheless, this is a relatively simple and inexpensive technique to maintain optimal operation of a QM for QPSK. 
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